
Ocean Dynamics
https://doi.org/10.1007/s10236-020-01436-7

Fast lagrangian particle tracking in unstructured oceanmodel grids

Ross Vennell1 ·Max Scheel1 · SimonWeppe2 · Ben Knight1 ·Malcolm Smeaton1

Received: 6 May 2020 / Accepted: 23 December 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Lagrangian particle tracking, based on currents derived from hydrodynamic models, is an important tool in quantifying
bio-physical transports in the ocean. Particle tracking in the unstructured grids typically used in coastal regions is
computationally slow, limiting the number of particles and ranges of behaviours that can be modeled. Techniques used in a
new offline particle tracker “OceanTracker” are shown to be two orders of magnitude faster than those used in an existing
ocean particle tracker for unstructured grids when run on a single computer core. More significantly, its computational
speed can exceed that achieved when particle tracking on a regular grid. The techniques for unstructured grids make it
possible to routinely calculate the trajectories of millions of particles. This large number of particles allows much better
estimates of dispersion and transport statistics, particularly when the probability of connection is low but the consequences
are significant, e.g. the spread of invasive species. It also enables wider exploration of parameter sensitivity and particles’
bio-physical behaviours to provide more robust results. The speed increases result largely from exploiting history and reuse
within the spatial interpolation of the hydrodynamic model’s output. Using multiple computer cores further increased the
speed to track a given number of particles.

Keywords Ocean transport · Lagrangian · Particle tracking · Biophysical

1 Introduction

Particle tracking is central to answering many scientific and
practical problems about bio-physical transport in the ocean.
Applications might involve tracking the movement of larvae
or the spread of pollution (Lynch et al. 2014; Van Sebille
et al. 2018). The number of physical drifters deployed in the
ocean is currently limited by budget and logistics. Tracking
large numbers of virtual particles advected by currents
obtained from hydrodynamic ocean models is commonly
used to quantify connectivity between regions. Tracking
virtual particles in structured model grids is relatively easy
to code and computationally fast. However, many coastal
ocean models use unstructured grids of triangles, in order
to make it computationally feasible to model at high spatial
resolution in the near-shore areas of interest, while also
using much coarser resolution offshore, Fig. 1. Particle

Responsible Editor: Eric Deleersnijder

� Ross Vennell
ross.vennell@cawthron.org.nz

1 Cawthron Institute, Nelson, New Zealand

2 MetOcean Solutions, Raglan, New Zealand

tracking in unstructured grids is computationally much
slower than in structured grids. Here we present a particle
tracker that is much faster at calculating particle trajectories
when using unstructured model grids.

The aim of this work is to make it routinely possible to
calculate the trajectories of millions of virtual particles in
unstructured grids using only desktop computer hardware,
and to track even greater numbers on high performance
computers (HPC). The techniques presented in this work
make a significant step towards a major challenge in particle
tracking: modeling billions of particles (Van Sebille et al.
2018), offline in unstructured grids. These large numbers of
particles enable much better estimates of physical properties
like dispersion (Petton et al. 2020) and improved statistics
of bio-physical connectivity to be calculated (Treml et al.
2015; Swearer et al. 2019), particularly when the probability
of connection is low but the consequences are significant,
e.g. the spread of marine diseases or invasive species.
Where particles have biological behaviours which affect how
individuals move, e.g. larvae settling when flows fall below
a critical value, large numbers allow many more variations
of this behaviour to be investigated. Large numbers also
allow behaviours to be assigned values from probability
distributions, e.g. a distribution of sediment particle fall
velocities to give better probabilistic distributions as

http://crossmark.crossref.org/dialog/?doi=10.1007/s10236-020-01436-7&domain=pdf
http://orcid.org/0000-0001-6961-9977
mailto: ross.vennell@cawthron.org.nz


Ocean Dynamics

Fig. 1 Unstructured grid of Cook Strait, New Zealand, one of the
example ocean model grids used in this work. Resolution for the

149,000 node grid ranges between 4500 m offshore and 36 m near-
shore. Colour shows water depth in metres. The 9 example particle
release locations used for this work are shown by the “x”

answers to questions about ocean transport. In addition,
releasing large numbers makes it much easier to carry
out more experiments to test the sensitivity of results to
parameter values, a key part of modeling research. The
techniques presented here are developed within a new
particle tracking code OceanTracker (OT), but they could
also be used to speed up existing codes.

Numerically, the time integration required to calculate
a particle’s trajectory is both simple and fast. The time-
consuming part in unstructured ocean model grids is
spatial interpolation of the hydrodynamic model’s output.
This interpolation gives the water velocity and other
values required at each particle’s current location. Thus,
computationally particle tracking in unstructured grids is



Ocean Dynamics

mainly a spatial interpolation problem. Here we outline a
number of approaches that can significantly increase the
speed of spatial interpolation by exploiting particle history
and reuse of interpolation weights to increase computational
speed.

The recent review of ocean Lagrangian analysis (Van
Sebille et al. 2018) lists 11 Lagrangian codes, e.g.
Delandmeter and Van Sebille (2019). Of these all but one
are for regular Arakawa-type grids. The only unstructured
Lagrangian code listed, Light in MPAS-O (Wolfram
et al. 2015b; Wolfram 2015a), must be run within the
hydrodynamic model code so cannot be used offline.
Thus, any additional particle tracking incurs the significant
computational cost of re-running the hydrodynamic model.

A search for offline ocean particle tracking codes
for unstructured grids revealed very few options. Of the
five found, three are open-source (OpenDrift (Dagestad
et al. 2018), PartTracker (Knight et al. 2009), SCHISM
Particle Tracking (Zhang et al. 2016, 2020)). Two were
commercial codes with limited details on their methodology
(DHI PT module (DHI 2020), SMS-PTM Surface-water
Modeling System 2020). To interpret the speed comparisons
made in this paper, we needed to know details of the
codes’ interpolation techniques; however, these details were
difficult to access. Of the open source codes, we chose
OpenDrift (OD) to make the speed comparisons in this
work as it was easy to see what interpolation techniques
were used. These techniques use Python’s fast C code based
module SciPy. PartTracker which is written in Matlab, runs
much slower than the other codes and uses opaque internal
routines for interpolation. In addition to a comparison
with OD, we also compare OceanTracker’s speed using
unstructured and structured grids on a synthetic data-set.

This short, preliminary results paper presents an initial
step to create a fast flexible framework for particle tracking
in structured and unstructured grids, which can easily
be customized for bio-physical particle behaviour using
high level code. See the Appendix for a description of
the framework. The following sections test the speed
of OceanTracker for a wide range of particle numbers,
hydrodynamic model grid sizes, numbers of interpolated
fields, and numbers of computer cores. These tests are
carried out using both synthetic data and a coastal ocean grid
for Cook Strait New Zealand, Fig. 1 (Heath 1978; Vennell
1998).

1.1 Particle tracking and interpolation

Ocean particle tracking is often done offline after running an
ocean hydrodynamic model to create a hindcast data-set of
velocities and other required variables. Lagrangian particle
trackers calculate trajectories by numerically integrating
a particle’s velocity found by spatially interpolating the
hydrodynamic model’s velocity to each particle’s location.

Spatial interpolation has three main steps: (1) find
the grid cell the particle sits within, (2) calculate the
interpolation weights required at the particle’s location
within the cell, and (3) apply these weights to the velocity
values at the surrounding cell’s nodes to give the velocity at
the particle location. Significant speed gains are possible by
explicitly separating these steps to avoid repetition.

In regular grids, step (1) is easily done by rounding.
However, in unstructured grids, finding the triangular
cell containing each particle can account for most of
computation time, as demonstrated on the left of Table 1,
which is discussed in detail below.

Table 1 Particle tracking run times in seconds for one hydrodynamic model hindcast day

SciPy-2D SciPy-3D OT-2D OT-3D

90k 250k 90k 250k 90k 250k 90k 250k

Total run time 2190100% 4124100% 5842100% 9952100% 36100% 49100% 74100% 104100%

Interpolation total 217999% 409599% 582499% 989299% 2979% 4076% 5873% 8374%

Find triangle and weights ∗216899%
∗406499%

∗469680% 795880% 2261% 3163% 2331% 3736%

Apply weights ∗6 0%
∗8 0%

∗22 0%
∗28 0% 617% 815% 2223% 2818%

Find depth cell - - 1105 19% 1899 19% - - 912% 11 11%

Read hindcast 1 0% 1 0% 3 0% 8 0% 1 3% 1 2% 2 3% 7 7%

Other, e.g. integration 10 0% 28 1% 15 0% 521% 617% 816% 1419% 1413%

Particle tracking was done within a synthetic 2D or 3D eddy on two model grid resolutions at 5-min time steps, i.e. 288 RK4 steps per hindcast
day. ∗Values are inferred from total interpolation time and likely similar times to apply weights. “Other” includes initialization, bookkeeping, and
Runge-Kutta integration. Values given are for 105 particles run on a single computer core. Note OT’s weak sensitivity of interpolation times to the
size of the grid



Ocean Dynamics

In triangular grids, there are a number of techniques
used to search for the triangle containing each particle. For
example, KD-tree methods use a pre-calculated tree. KD-
tree methods are a faster way to find the containing triangle

when you cannot make a good guess at which triangle
contains the particle; however, using triangle walk methods
can be made very fast by exploiting particle history to make
a good guess.

Fig. 2 Illustration of the advantage of the short triangle walk (STW) in
searching for the triangle containing the particle at the next time step
Pn+1, given by red dot. Walks begin with an initial guess of the trian-
gle. A naive long triangle walk (LTW) might always start at the same
green triangle, e.g. “A”. A semi-naive LTW, as used within OD, uses
the triangle containing the current position of last particle searched for,

e.g. “B”. This previous particle is unlikely to be close to Pn+1. Inset
shows the STW, which starts at a much closer triangle, that containing
the particle at the current time step Pn, the green dot. This results in
a much lower computational effort in finding the triangle containing
Pn+1



Ocean Dynamics

2 OceanTracker—computational

The structure of the Lagrangian code OceanTracker (OT) is
outlined in the Appendix 1. OceanTracker uses a range of
techniques to speed up particle tracking, outlined below.

2.1 Long triangle walk versus short triangle walk

Triangle walk methods start with an initial guess of which
triangle a particle is in, green triangles in Fig. 2. If the
particle is not in this triangle, the method chooses an
adjacent triangle which is a step closer to the particle’s
new location, Pn+1. It continues this walk across the grid
until the particle lies within the current triangle. However,
computation times will strongly depend on how close the
initial triangle is to the required one containing Pn+1.

Naive triangle walk algorithms are those which make
a poor initial guess of the triangle, requiring a long
triangle walk (LTW) through many triangles to find the one
containing a particle. A naive starting point would be to
always start the walk from the first triangle in the grid,
e.g. 370 steps from A to Pn+1 in Fig. 2. The LTW SciPy
interpolator is used by Lagrangian particle tracking code
OpenDrift for unstructured grids (Dagestad et al. 2018).
When repeatably used, SciPy’s LTW retains the triangle
found for the previous particle as an initial guess for the
next particle. For a single pulse of particles, which initially
lie close together, using any other particle’s triangle as
a guess for the starting triangle for another particle will
produce a relatively short walk, 56 steps from B to Pn+1

in Fig. 2. But for particles released from many locations
and different times, this semi-naive guess will result in a
poor initial starting point, which will get worse as particle
locations diverge over time. A LTW may fail if a coastline
lies between the initial and required triangle, or if it takes
too many steps. This requires a fall back search method, e.g.
SciPy’s LTW falls back on a brute force search.

A particle’s history can easily provide an excellent guess
for the start of a triangle walk. The triangle containing Pn

at the current time step is likely very close to the triangle
containing its location Pn+1 at the next time step, Fig. 2. In
many cases, Pn+1 already lies within the triangle containing
Pn, or the triangle immediately adjacent to it, resulting in
a very short walk. For the first time step, the STW also
requires a slow search method to find the triangle containing
the particle’s release location, P0. Here, a KD-tree search is
used.

1An online ocean plastic public education tool which uses
OceanTracker’s computational speed to calculate trajectories within
user attention spans is at https://www.oceanplasticsimulator.nz.

We show here that exploiting this history to enable a
short triangle walk (STW) can reduce particle tracking
computations by orders of magnitude, when compared to
LTW SciPy. We are not aware of another unstructured
grid ocean particle tracker that exploits the computational
advantage of a STW. The STW algorithm used here is
a modified version of the SciPy’s Delaunay triangulation
code. A future “native” grid version will improve the speed
advantage, while also enabling better application of lateral
boundary conditions, when particles fall within triangles
bordering the coast or an open boundary. A STW starts at
the physically sensible current location of a particle; thus
should a coastline be encountered on the walk, it triggers the
application of a lateral boundary condition.

2.2 Reuse of horizontal interpolation weights

A second computational advantage exploited here is reuse of
previously calculated interpolation weights. When perform-
ing step (1) of interpolation, finding the triangle is expen-
sive, but separating out step (3) can speed computations.
This allows the weights from (2) to be reused to interpolate
other variables from their nodal values at a particle’s current
location. Here we use linear horizontal interpolation within
a triangle. For this case, the interpolation weights are each
particle’s barycentric coordinates within the triangle con-
taining it. Barycentric coordinates are the areas of the three
sub-triangles formed by a point within a triangle and its
nodes, expressed as a fraction of the triangle’s area (Lynch
et al. 2014). Barycentric coordinates can also be used to
determine whether a particle lies within the current triangle
in the triangle walk algorithm.

The first place to implement reuse of already calculated
values is in spatially interpolating the velocity at each sub-
step of the Runge-Kutta 4 (RK4) method used for time
integration. At each sub-step, linear temporal interpolation
requires two spatial interpolations of the velocity field at the
hindcast time steps immediately before and after the time at
which the algorithm needs to calculate the particle velocity.
These two interpolations occur at the same spatial location,
so that the weights calculated for the first time step can be
applied to the nodal values of the second time step. Reusing
the weights eliminates at least one triangle search per RK4
sub-step.

2.3 3D short vertical walk

Along with finding the horizontal triangle a particle lies
within, 3D particle tracking must determine which depth
cell or layer each particle is in, in order to vertically
interpolate the hindcast’s fields at a particle’s 3D location.

https://www.oceanplasticsimulator.nz


Ocean Dynamics

Many hydrodynamic models use layer thicknesses that
vary across the model domain to provide similar vertical
resolution in both the deep and shallow regions made up
of triangular prisms (Lynch et al. 2014). For example,
SCHISM has layers at fractions of the distance between
the free-surface and the bottom as a hybrid “s–z” vertical
coordinate (Zhang et al. 2016). This requirement for
interpolation at each RK4 sub-step to define the spatial and
time dependent vertical grid adds to both computational
time and complexity. The current version of OpenDrift
(ver. 1.2.0) (Dagestad et al. 2018) avoids these issues by
re-gridding the hindcast to space and time invariant depth
levels. Here, we preserve the hydrodynamic model’s vertical
resolution by treating the layer depths, given at the triangles
nodes, as another 2D vector field that must be interpolated
to find the layer containing each particle. This approach can
flexibly deal with hindcasts from ocean models using the σ

and ρ type vertical coordinate systems, which are described
in Song and Hou (2006), and other s-level type coordinates
(Delandmeter and Van Sebille 2019).

To find a particle’s layer, firstly, the hindcast’s M layer
depths are treated as a 2D M-dimensional vector field that
is interpolated from its nodal values to create a vector of
all the layer depths at each particle’s location. Secondly,
these vectors are searched for the layer containing each
particle. This approach is made faster here by reusing the
horizontal interpolation weights for each layer. However, it
still requires M weight reuses before the layer vectors can
be searched.

The search time is significantly further reduced by
implementing a short vertical walk (SVW) to find the
layer containing each particle. SVW uses the vertical layer
containing the particle at the previous time step as an initial
guess for the current layer. It tests whether the current
particle depth is above or below this layer, then steps up
or down the layers until it finds the layer containing the
particle. Time is saved by doing horizontal interpolation by
weight reuse, only when required at each vertical step in the
search. Many particles will likely be in the same layer after
the time step; these particles only require 2 weight reuses
per particle to verify the new layer. SVW typically reduced
the computational time required to find the depth layer by
a factor of 4 in the 12 layer hindcast (i.e. M=12) examples
presented in Section 4.

3 Synthetic eddy data

To enable comparison of particle tracking speeds for a
range of particle numbers, grid sizes, and additional fields,
a synthetic data-set was created. The hindcast data used was
the velocity of a 3D circular eddy with a linearly increasing
tangential velocity, which varies over a semi-diurnal tidal

cycle. The eddy has a peak velocity of 1 m/s at 10 km from
its centre. The hindcast covers a 30-km rectangular domain,
with varying numbers of grid points. The regular domain
was treated as a unstructured grid for the particle tracking
tests presented here (except in Section 4.3, which compares
performance for regular and unstructured grids). The water
depth was 30 m over most of the domain but included a
5-km wide, 15-m-deep east-west ridge. The vertical grid
consisted of 12 s-layers, spaced at 10% of the water depth,
or 5% near the bottom and surface. The hindcast included
vertical velocities calculated to ensure flows were parallel to
the topography near the bottom and zero at the surface. The
hindcast files contained the 3D velocity vectors, the layer
depths, and the free surface elevation at 30-min intervals
for 10 days. The 2D synthetic hindcast also used here,
only contained the horizontal velocity components from the
uppermost depth bin of the 3D hindcast.

The synthetic tests released a given number of particles
in a single pulse at time zero, at random locations within
a 2-km-wide annulus centred at 10 km from the centre
of the eddy. Particle tracking was done at 5-min time
steps. All tests were carried out on a workstation (dual 14
core Intel Xeon Gold 6154 CPUs, 3 GHz, 24.75 MB L3
cache). Slightly faster results were obtained using a desktop
computer (Intel 10 core I9-7900x, 3.3 Ghz, 13.75 MB L3
cache), but the workstation results are presented here as it
allowed exploration of scalability at higher core numbers.

The particle tracking speed comparisons use two versions
of the same base code of OT, one using the LTW SciPy
interpolator LinearNDInterpolator, the other using a STW
and weight reuse. The Lagrangian particle tracking code
OD (Dagestad et al. 2018) has a well-developed regular
grid interpolator and for unstructured grids it uses the LTW
Scipy interpolator. Thus, the presented speed comparisons
are essentially between OT and OD for unstructured grids.

3.1 A direct comparison with OpenDrift?

The current version of OpenDrift (1.0.7) uses LinearNDIn-
terpolator indirectly to interpolate fields on an unstructured
grid. This makes a direct speed comparison of OT and OD
difficult. OD first regrids the unstructured hindcast to a reg-
ular grid over a rectangle which bounds the spatial extent of
the particles at each time step, then does particle tracking
by interpolating fields on this regular grid. This approach
will be fast for small numbers of particles confined to
a small region. However, computationally this approach
scales poorly once the number of particles exceeds the num-
ber of nodes of the unstructured grid within the bounding
rectangle. For particles released from widely spaced loca-
tions, which then spread out over time, the bounding box
will approach the size of the full grid, e.g. Fig. 3. Thus,
for the grid in Fig. 1, OD would be slower than using



Ocean Dynamics

Fig. 3 Example of 10 day particle trajectories for 50 particles released from each of the 9 sites. Colours indicate the particle’s release site

LinearNDInterpolator directly for particle numbers above
140,000. In addition, with this large bounding box, to match
the underlying high resolution of the unstructured grid, the
regular grid will require an unmanageable number of nodes.
For example, to match the 36-m minimum triangle size in
Fig. 1 would require OD to generate an manageable 65×106

node regular grid of values at each time step for each field.
Thus, to compare OD with OT for the large number of par-
ticles which are the focus of this work, we simulated the

performance of OD as if it used LinearNDInterpolator to
do particle tracking directly on the unstructured grid (we
labeled this simulation SciPy). As a consequence, the com-
putational speed advantages of OT over the current release
of OD at large numbers of particles presented in this work
are conservative. It is expected that a future release of OD
(ver. 1.5.0) will use a KD-tree approach to do “native” inter-
polation for unstructured grids. Section 6.1 gives a direct
speed comparison with this future release.



Ocean Dynamics

4 Speed comparisons—synthetic data

4.1 Particle numbers and grid size

Table 1 shows run times for the SciPy and OT for 2D and
3D synthetic eddies with two hydrodynamic grid sizes. For
SciPy, 99% of the time is spent doing the interpolation.
Thus, techniques to speed interpolation are the main focus
of this work. Table 1 demonstrates that OT is much faster
at interpolation: in 2D, 75 times faster for the 90k node
hydrodynamic grid and 110 times faster on the 250k node
grid. The relative speeds in 3D are even higher. It was
not possible to partition the time used within SciPy’s
LinearNDInterpolator between finding the cell and applying
the weights. However, both approaches use similar C++
based code to apply the interpolation weights, so it was
assumed that weight application times for both were the
same. With this assumption, SciPy expends almost all its
computation time on finding the cells and weights.

The significant speed advantage of OT-2D over SciPy-
2D derives roughly equally from the STW approach and
the reuse of interpolation weights between the two time
steps which must be interpolated for each sub-step of the
RK4 integration, see Section 4.2. The time spent finding the
vertical cell or layer is also significant for SciPy-3D. OT-3D
has the additional advantage of using a SVW, Section 2.3.

Figure 4a plots interpolation time versus the number of
particles released. Both interpolation techniques show near-
linear scaling of computation time with particle numbers,
though the times for OT-2D are much lower. Figure 4b plots
the time taken to interpolate by SciPy relative to OT. On the
90k grid with 103 particles, OT-2D is only 20 times faster,
presumably due to fixed overheads of code interpretation,
setting up function calls etc., but peaks out at 75 times faster
for more than 105 particles. For the 250k grid, the relative
speed advantage is almost 25% higher.

Figure 4b also shows the relative speed for 3D particle
tracking. It demonstrates that the SVW increases the speed
advantage of OT by 50% for large numbers of particles. The
largest advantage shown is 150 times faster for 106 particles
on the 250k node 3D grid.

Table 1 indicates that the time taken by OT-2D for the
250k node grid is only marginally longer than the time for
the 90k node grid. This illustrates one of the significant
advantages of OT-2D that interpolation times are insensitive
to grid resolution. As a result, the speed advantage of OT-
2D over SciPy-2D grows nearly linearly with hydrodynamic
model grid size, as seen in Fig. 5. This insensitivity is
a consequence of using an STW, where the triangle at
beginning of the time step is likely less than a couple of
triangles away from the triangle containing the particle at
the end of the time step. Increasing the hydrodynamic model
grid resolution may not increase the number of triangles the

Fig. 4 (a) Comparison of two interpolators for range of particle
numbers for synthetic eddy data run on a single computer core. (b) OT-
2D is up to 80 times faster than SciPy2D for this example, but up 150
times faster in 3D for the 250k node grid

algorithm must walk through in the short distance between
the old position and the new position. For example, if there
is a one step walk to the adjacent triangle, the grid size
would have to halve in order to increase the number of
triangles walked. This would require a hydrodynamic model
grid with four times the number of nodes, which would
likely make running the hydrodynamic model infeasible. In
contrast, for the long walk of SciPy2D, a small increase
in grid resolution would likely result in a proportionate



Ocean Dynamics

Fig. 5 (a) Comparison of two interpolators for a range of hydrody-
namic model grid sizes for 105 particles released within the synthetic
eddy run on a single computer core. (b) The ratio of computational
times of SciPy over OT. OT’s speed advantage shows a strong almost
linear increase with hydrodynamic model grid size

increase in the number of triangles walked. This makes the
long-walk computation times of SciPy more sensitive to grid
resolution over realistic ranges of the average grid resolution.

4.2 Reuse of interpolation weights

As noted earlier, weight reuse eliminates one spatial
interpolation of the velocity field. Thus, weight reuse

explains half of the speed improvement of OT over SciPy in
Table 1 and subsequent figures.

All the spatial fields that need to be interpolated can
be split into two types. The first are dynamically “active
fields”, those that affect the velocity of the particle and
must be interpolated to find the particle velocity. The active
fields always include water velocity but may also include
other fields, such as Stokes drift. Dynamically active fields
must be interpolated at every sub-step of the RK4 time
integration, so are interpolated four times per time step.

The second type, dynamically “passive fields”, do not
affect the particle velocity, but may affect how a particle
behaves, or must be tracked over time. For example, tidal
elevation affects behaviour as it is needed to determine
whether a particle has been stranded by the receding tide
and needs to remain stationary during the next time step. A
tracked example might be the temperature, which may affect
how the concentration of a compound within a particle
decays with time. Dynamically passive fields only need to
be interpolated at the end of each RK4 step, so required only
a quarter of the computation effort required to interpolate
active fields.

Figure 6a shows much lower computational time per
RK4 time step for OT, when compared to SciPy. Though
distorted by the log scale vertical axis, the figure also
demonstrates that interpolating additional active or passive
fields with OT is essentially free, when compared to the
cost incurred interpolating additional fields when using
SciPy.

Figure 6b shows that for 105 particles on the 90k grid
OT-2D is 70 times faster than SciPy-2D, when no additional
fields require interpolation. The figure also shows that using
weight reuse to eliminate a SciPy interpolation increases
the relative speed advantage by around a factor of 50
per additional active field and 14 per additional passive
field. This roughly 4:1 scaling of the relative advantage
for additional active and passive fields agrees well with
expectations based on the discussion above.

4.3 Comparison to regular grid

Particle tracking in regular grids is typically much faster,
because finding the horizontal cell containing each particle
can quickly be done by rounding coordinates down. Figure 7a
compares the interpolation speed of OT for the unstructured
grid interpolator with weight reuse and a regular grid
interpolator without weight reuse. Surprisingly, in 2D at
higher particle numbers, OT’s triangular grid interpolator is
marginally faster than the regular grid interpolator on the
90k node grid. This suggests that the benefits of weight
reuse outweighed the additional computational cost of the
STW, over coordinate rounding in regular grid.



Ocean Dynamics

Fig. 6 (a) Benefits of reuse of interpolation weights for 105 particles
released within the 2D synthetic eddy with a 90k node grid run on
a single computer core for dynamically active and passive fields. (b)
Weight reuse increases the interpolation speed of OT-2D relative to
SciPy- 2D by 50 per dynamically active field and 14 per dynamically
passive field

Figure 7a demonstrates that OT-3D for structured grids
is an order of magnitude slower than OT-3D-unstructured.
This difference is mainly the result of OT’s SVW.

Figure 7b shows that for most hydrodynamic model grid
sizes OT’s triangular grid interpolator is faster than the
regular grid interpolator when releasing 105 particles. Only
for 2D interpolation of models with more than 105 grid
nodes does the regular grid have a marginal speed advantage
in the examples shown.

Fig. 7 Comparison of interpolation times for synthetic eddy treated
as an unstructured grid and as a regular grid, when run on a single
computer core

5Multi-core performance

The results above are for OT running on a single
computer core. Running on more cores allows more particle
trajectories to be calculated at the same time. This was done
by using a case-master code to run a specified number of
copies of OT. Each copy ran independently on a separate
core with its own set of particles and random starting
locations. Figure 8 compares computational efficiency for a
range of cases based on the total elapsed time to run all of



Ocean Dynamics

Fig. 8 Effect of number of processor cores on computational speed
for the synthetic eddy. Solid lines are for OT-2D, with different lines
for different numbers of particles per core as indicated by legend.
Dashed lines are for OT-3D. Y-axis is the speed is measured by the total
number of particle time steps carried out across all cores per second.
This includes the time to read the hindcast file. These curves are for a
90k node grid, but curves for 250k grid are similar

the copies (excluding the time to read the hindcast). Each
copy released between 103 and 3 × 106 particles, resulting
in up to 7.5 × 107 particles being released.

The total number of particle time steps processed per
second in Fig. 8 demonstrates that more cores are faster,
with speeds initially increasing linearly with the core count.
There is no speed advantage above 10 cores. Overall, Fig. 8
demonstrates that using more cores to run multiple cases is
up to 5–8 times faster. For a given number of cores, times are
longer for small numbers of particles per core, as the time
to read the hindcast is significant. Above 105 particles per
core, read time is insignificant compared to the time spent
on computations; thus, the curves become similar.

For a given total number of particles, using more than
10 cores did not increase speeds on the hardware used.
This limit to the benefit of additional cores may result
from limitations of the resources they share. Cores share
“L3” memory cache and bandwidth to main memory. Thus
beyond 10 cores on the hardware used here, the capacity
of the cores to do the computations may exceed the ability
of the system to supply them with the data they need.
This suggests further that work to reduce the volume of
the memory that must be transferred to the CPU may lead
to further speed improvements by enabling more cores to
exploited. In addition, using HPCs with a large number
of physical CPUs with dedicated memory access may

also significantly increase the number of trajectories which
could be calculated in a given time. One detail apparent in
Fig. 8, is that at high core numbers using 5 × 104 particles
per core runs slightly faster than running more particles
per core. This apparently optimal number of particles per
core may be due to caching making it more likely that a
previously accessed value is already in the cache than at
higher particle numbers.

6 Coastal grid example—Cook Strait

To see if the speed improvements evident in the synthetic
hindcast tests also occur with more realistic model domains,
particle tracking was done with a hindcast produced by
SCHISM (Zhang et al. 2008, 2016) for Cook Strait, New
Zealand, Fig. 1. Figure 9 shows example particle tracks from
the 9 release locations used in the tests. Unlike the synthetic
data tests, the Cook Strait example includes horizontal
and vertical random walks to simulate dispersion. These
tests also included stranding by the tide, which requires
interpolation of two additional passive fields (tide and water
depth) to determine whether a particle has stranded or can
be re-floated. The simulations were run at a 5-min time step.

The relative computational times for Cook Strait are
consistent with those based on the synthetic data, with
additional passive fields. Figure 9b shows OT is typically
150 times faster in 2D and 200 times faster in 3D. Unlike
previous comparisons, this speed comparison includes the
time to read the hindcast. At low particle numbers, read
time is a significant fraction of the total time: this read time
dilutes the speed advantage of OT’s interpolation techniques
on the left of Fig. 9b. Also, the larger files that must be read
for the 3D cases dilutes the speed advantage of OT-3D to a
point that the gains are less than for OT-2D.

Multi-core performance also has similar computational
speed as the synthetic data tests and again there are speed
benefits up to 10 cores and little gain beyond this, Fig. 10.

6.1 Comparison with future release of OpenDrift

Previous speed comparisons with OD were indirect, done
with OT using SciPy to simulate OD’s interpolator as if it
used LinearNDInterpolator directly, see Section 6.1. It is
expected that a future release of OD will uses a KD-tree
based interpolation. Like OT, this future release “native”
grid interpolator preserves the horizontal resolution of the
hindcast’s unstructured grid and its time-varying s-level
vertical grid. We carried out a direct comparison by running
a simulation with a preliminary version of the unstructured
grid reader to be included in a future OD release, for the 3D
hindcast of the Cook Strait grid.



Ocean Dynamics

Fig. 9 (a) Speed comparison for particles released at the 9 locations
within the Cook Strait 149k node model grid in Fig. 1. Plot gives the
total run time (i.e. including time to read the hindcast), run on single
core. (b) Ratio of the time taken by SciPy to that for OT. The black
lines are a comparison with an expected future release of OpenDrift,
discussed in Section 6.1

The black lines in Fig. 9 compare the speed of running
OD 3D KD-tree with that of OT for up to 5 × 105particles.
For unstructured grids, OT-3D is up to 700 times faster
than OD. The OD-3D KD-tree is also 5 times slower than
OT’s simulation of OpenDrift using SciPy. This is likely due
to OD-3D rebuilding the KD-tree at each time step as the
vertical grid varies over time. We plan to incorporate some
of the speed advantages of OT in future versions of OD’s
unstructured grid reader.

Fig. 10 Benefits of additional computer cores for particles released
in Cook Strait from the 9 locations in Fig. 1. Solid lines are for OT-
2D, with different lines for different numbers of particles per core as
indicated by legend. Dashed lines are for OT-3D. Y-axis is the speed
which is measured by the total number of particle time steps carried out
across all cores per second. This includes the time to read the hindcast
file

7 Discussion: future improvements

The multi-processing results indicate that the limiting step
for large numbers of particles is not doing the required calcu-
lations, but getting the field and particle data from memory
to the CPU to perform those calculations, i.e. limitations on
memory bandwidth. Thus, reducing the volume of data that
must be transferred may provide the best avenue for fur-
ther speed improvements. Much of the current version uses
Python’s NumPy module to do basic arithmetic operations
using arrays. This means that large arrays must be moved
into memory for each arithmetic operation. There are many
places where these arithmetic operations could be combined
within a for-loop of Numba-based code (Numba compiles
flagged sections of Python code into fast running low level
code). Tests showed that a combining a matrix addition
with an element-wise multiplication within the same for-
loop took only 70% of the time to do a matrix addition,
followed by a matrix multiplication. Combining more than
two operations within a Numba for-loop was even faster.

For 3D s-level hindcasts, the time searching for each
particle’s depth cell could be significantly reduced by using
a particle’s vertical velocity to decide the search direction.
This would reduce the minimum number of interpolations
required to determine the vertical cell from two to one.
As many particles likely lie within in the same cell as the



Ocean Dynamics

previous time step, this approach would significantly reduce
the time taken to confirm this.

Running cases as Python processes in parallel to increase
the number of particles that could be processed at the
same time meant each case was independently reading
the hindcast’s time steps into separate read buffers within
OT. This could be improved by creating a shared hindcast
read buffer, which would also require the development of
coordination between processes to ensure all have processed
the time steps in the buffer before data is discarded. Doing
so would significantly reduce both read time and the main
memory required to run parallel cases.

The numerical approach used was a RK4 numerical step
followed by a random walk. This could be improved by
using stochastic differential equations (Kloeden and Platen
2013). Their use has not attracted much attention in ocean
modeling (Shah et al. 2013); however, they would improve
the physics of the particle tracking when there is random
motion.

8 Conclusions

The short triangle walk (STW) and weight reuse, along
with other developments, conservatively provides a speed
advantage of two orders of magnitude over OpenDrift’s
interpolation techniques, when particle tracking with the
unstructured grids, Fig. 4. A direct comparison with
a preliminary version of an expected future release of
OpenDrift (ver. 1.5.0) shows OceanTracker (OT) is up
to 700 times faster, Fig. 9. More significantly, the speed
improvements allowed computation to be marginally faster
when using regular horizontal grids in 2D, and much faster
in 3D, Fig. 7. Though presented as part of a new code,
OT, the fast interpolation techniques could be incorporated
into existing unstructured grid particle tracking codes. The
techniques remove one of the barriers to using unstructured
grid particle tracking: their previous poor performance
when compared to structured grids. In addition, Fig. 9
suggests that incorporating weight reuse may improve the
performance of particle tracking in structured grids.

OT’s speed advantage makes it routinely possible to
simulate millions of particles when using unstructured grids,
enabling more robust estimates of dispersion and bio-
physical ocean connectivity for a wider range of particle
parameters and behaviours. For example, the 149k node
Cook Strait model required 2 s per RK4 time step to
calculate the 3D trajectories of 106 particles on a single
core, Fig. 9a. This equates to 5 h to calculate one million
month-long trajectories at the 5-min intervals that might be
required in a tidally-dominated coastal region. Thus, 2–3
million trajectories could be calculated overnight on a single
core.

OT’s STW makes computational times insensitive to
the hydrodynamic model’s horizontal grid resolution for
realistic variations in average triangle size, Figs. 5 and 7b.
OT’s SVW preserves a hydrodynamic model’s spatially and
temporally varying vertical grid and allows computation
times in 3D to be typically only 2–3 times longer than those
for 2D tracking. Computational efficiency also scales well
when additional fields are required to be interpolated, as
weight reuse enables additional active and passive fields to
be interpolated at low computational cost, Fig. 6.

Using multiple cores to run cases in parallel made
processing 5–8 times faster on the hardware used, enabling
the trajectories of a given number of particles to be
calculated in less time, Figs. 8 and 10. There was no
improvement above 10 cores, suggesting that access speeds
to shared memory resources is limiting computational
speeds at higher core numbers. This indicates that OT
could be improved by reducing the volume of memory that
must be accessed and optimizing the order in which it is
accessed in order to take advantage of hardware caching,
see Section 7. Modifications to the code structure would
also allow future versions to exploit other hardware types,
such as GPUs, or to split regions of the model domain
across multiple processors on HPCs (Wolfram 2015a). All
of these modifications could provide benefits in addition to
the performance improvements outlined here. In addition,
the fast techniques could easily be extended to used higher
order spatial interpolation schemes or use adaptive time
stepping RK45 integration.

Acknowledgements This work was funded by a New Zealand
National Science Challenges MBIE grant within the Sustainable Seas
Programs 5.1.4 and 4.2.2. We also appreciate an anonymous reviewer’s
suggestion on a further speed improvement to finding the depth cell,
which is outlined in Section 7 for inclusion in subsequent version of
OceanTracker.

Appendix. OceanTracker structure (version
0.1)

To make it more accessible, OceanTracker (OT) is written in
the modern language Python. Key computational tasks used
Numba.

The OT framework uses an explicit family tree of Python
classes to connect major parts of the code, Fig. 11. This
allows the user to easily insert different versions of each
family member into the tree, customized to their usage. The
OceanTrackerSim class sets up the particle tracking, which
can be on one or more computer cores. Solver does the
time integration to calculate the particle trajectories. Spatial
and temporal interpolation is managed by the FieldGroup
which contains the hindcast file reader and an appropriate
spatial interpolator. The file reader fills memory buffers



Ocean Dynamics

Fig. 11 Structure of parent-child relationships of classes within Lagrangian code OceanTracker v0.1

with multiple time steps of the hindcast, which are then
used for particle tracking. At each time step of the Solver,
the Mover class returns the water velocity at each particle’s
location, plus any modifications to the velocity due to
particle behaviours, such as a fall velocity. The Solver
integrates this velocity using RK1, RK2, or RK4 numerical
integration.

Data for individual particles are held within a Particle
Group, which holds several types of particle properties.
Group properties are relevant to the whole set of particles,
e.g. the current time. Individual particle properties which
derive from spatial interpolation of hindcast fields are
held as Field Particle properties, e.g. particle location,
velocity, water temperature, and water depth. Finally,
Custom properties are those added by a user, which can
be calculated from the other properties; for example, the
decaying concentration of a compound within each particle,
where the decay rate depends on the water temperature
experienced by the particle. Finally, the Particle Writer
underpins the Particle Group to write output as required
by user. This grouping of particle properties into groups
allows many aspects of property creation and use to be
automated, e.g. requesting a temperature to be loaded
from the hindcast file causes it to be added to a list of
particles properties which can then be automatically read,
interpolated to particle locations and written to output files,
without any changes to the code. All hindcast variables
are classified in types of 2D/3D, time-dependent/time-
independent, vector/scalars, to further aid this automation.

OT’s explicit family tree allows members to eas-
ily obtain information from other members, e.g. the
Mover requests the interpolated water velocity from its
sibling “fields” using text strings (written in Python
as v = self.sibling(“fields”).interp(“water velocity”)
); similarly a custom particle property could request
the interpolated water temperature using code
self.greataunt(“fields”).interp(“water temperature”).

All family members are driven by parameters held
in Python dictionaries, which can have specified default
values. The parameters contain particle release locations,
integration time step etc., appropriate to each family
member. This was done so that the OT could be entirely
driven by a set of parameter dictionaries, making it easier
to support web-based requests for calculated trajectories.
The parameter dictionary approach also means that,
as users modify or extend a family member through
code inheritance, previous parameters are acquired by its
descendants. The most likely member to be extended are
the Mover, in order to model how a user’s bio-physical
particle moves in response to its environment, or the Reader
to customize it for the user’s file format.

Another feature to make adaption and extensions easier
to implement is to use internal property names as text
strings (e.g.“water temp”), which are mapped to file
variable names by the user. These internal names are
then used as keys of a Python dictionary to access
and update variables stored as matrices using high level
code, e.g. particle.set property(“x”, x new) to update all



Ocean Dynamics

particle locations with new vectors. These properties hold
matrix data of dimensions determined at start-up from the
dimensions of the hindcast data or model parameters. This
abstraction of particle properties to dictionary keys also
enables automation of operations like reading data files and
writing output, which simply loop through the set of keys of
the property dictionaries.

Some other features of OT include the ability for particles
to be stranded/re-floated by the tide and be re-suspended
based on critical shear velocity. A basic lateral boundary
condition is implemented in this first version of the code.
Particles which leave the hydrodynamic model’s domain
are flagged as bad. There is an option to return these bad
particles to their last good position, where they are allowed
to move at the next time step.

The numerical accuracy of OT’s RK4 time integration
was tested by releasing particles in a synthetic hindcast
with the 90k nodes spaced at 100-m intervals over a 30-
km-wide domain. Particles were released at a 10-km radius
from the centre of the eddy, where peak flows were 1 m/s.
The numerical drift from the starting radius was 0.1 m per
month, for particle tracking done at 5-min time steps.

References

Dagestad K-F, Röhrs J, Breivik O, Ådlandsvik B (2018) Opendrift
v1. 0: a generic framework for trajectory modelling. Geoscience
Model Development

Delandmeter P, Van Sebille E (2019) The parcels v2. 0 Lagrangian
framework: new field interpolation schemes. Geosci Model Dev
12(8):3571–3584

DHI (2020) Mike21 particle tracking module. https://www.
mikepoweredbydhi.com/products/mike-21/sediments/
particle-tracking

Heath RA (1978) Semidiurnal tides in Cook Strait. NZJMFW 12:87–
97

Kloeden PE, Platen E (2013) Numerical solution of stochastic
differential equations, vol 23. Springer Science & Business Media

Knight BR, Zyngfogel R, Forrest B et al (2009) Parttracker-a fate
analysis tool for marine particles. Coasts and Ports 2009: In a
Dynamic Environment, pp 186

Lynch DR, Greenberg DA, Bilgili A, McGillicuddy Jr D J, Manning
JP, Aretxabaleta AL (2014) Particles in the coastal ocean: theory
and applications. Cambridge University Press

Petton S, Pouvreau S, Dumas F (2020) Intensive use of Lagrangian
trajectories to quantify coastal area dispersion. Ocean Dyn:1–19

Shah SHAM, Heemink AW, Gräwe U, Deleersnijder E (2013)
Adaptive time stepping algorithm for Lagrangian transport
models: theory and idealised test cases. Ocean Model 68:9–21

Song YT, Hou TY (2006) Parametric vertical coordinate formulation
for multiscale, boussinesq, and non-boussinesq ocean modeling.
Ocean Model 11(3-4):298–332

Surface-water Modeling System (2020) PTM Lagrangian particle
tracking with SMS

Swearer SE, Treml EA, Shima JS (2019) H7 a review of biophysical
models of marine larval dispersal. In: Oceanography and marine
biology. Taylor & Francis

Treml EA, Ford JR, Black KP, Swearer SE (2015) Identifying the key
biophysical drivers, connectivity outcomes, and metapopulation
consequences of larval dispersal in the sea. Movement Ecol 3(1):17

Van Sebille E, Griffies SM, Abernathey R, Adams TP, Berloff P,
Biastoch A, Blanke B, Chassignet EP, Cheng Y, Cotter CJ et al
(2018) Lagrangian ocean analysis: fundamentals and practices.
Ocean Model 121:49–75

Vennell R (1998) Observations of the phase of tidal currents along a
strait. J Phys Oceanogr 28(8):1570–1577. https://doi.org/10.1175/
1520-0485(1998)028<1570:OOTPOT>2.0.CO;2

Wolfram (2015a) https://github.com/MPAS-Dev/mpas-dev.github.com
Wolfram PJ, Ringler TD, Maltrud ME, Jacobsen DW, Petersen

MR (2015b) Diagnosing isopycnal diffusivity in an eddying,
idealized midlatitude ocean basin via Lagrangian, in situ, global,
high-performance particle tracking (LIGHT). J Phys Oceanogr
45(8):2114–2133

Zhang YJ, Ye F, Stanev EV, Grashorn S (2016) Seamless cross-scale
modeling with SCHISM. Ocean Model 102:64–81

Zhang Y, Baptista AM (2008) SELFE: a semi-implicit eulerian–
lagrangian finite-element model for cross-scale ocean circulation.
Ocean Model 21(3-4):71–96

Zhang YJ (2020) Schism post processing particle tracking. http://www.
stccmop.org/CORIE/modeling/selfe/utilities.html

https://www.mikepoweredbydhi.com/products/mike-21/sediments/particle-tracking
https://www.mikepoweredbydhi.com/products/mike-21/sediments/particle-tracking
https://www.mikepoweredbydhi.com/products/mike-21/sediments/particle-tracking
https://doi.org/10.1175/1520-0485(1998)028<1570:OOTPOT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<1570:OOTPOT>2.0.CO;2
https://github.com/MPAS-Dev/mpas-dev.github.com
http://www.stccmop.org/CORIE/modeling/selfe/utilities.html
http://www.stccmop.org/CORIE/modeling/selfe/utilities.html

	Fast lagrangian particle tracking in unstructured ocean model grids
	Abstract
	Introduction
	Particle tracking and interpolation

	OceanTracker—computational
	Long triangle walk versus short triangle walk
	Reuse of horizontal interpolation weights
	3D short vertical walk 

	Synthetic eddy data
	A direct comparison with OpenDrift?

	Speed comparisons—synthetic data
	Particle numbers and grid size
	Reuse of interpolation weights
	Comparison to regular grid

	Multi-core performance
	Coastal grid example—Cook Strait
	Comparison with future release of OpenDrift

	Discussion: future improvements
	Conclusions
	Appendix 1 OceanTracker structure (version 0.1)
	References


